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ABSTRACT 

This thesis study focuses on the evaluation of the boundary layer height (BLH) 

diagnosed from a mesoscale model in comparison to wind profiler/Radio Acoustic 

Sounding System (RASS) measurements from the profiler site at Miramar Marine Corps 

Station (MMR).  This objective is met through validation of the observed BLH and 

evaluations of the model BLH using the observed BLH's.  In particular, two methods, one 

uses Signal-to-Noise-Ratio (SNR) from the profiler, and the other uses the vertical 

gradient of virtual potential temperature from RASS, were developed to detect BLH from 

the profiler/RASS systems.  The detected BLH was validated against BLH from 

rawinsonde measurements. The SNR method gives a better mean BLH in the clear 

convective unstable BL’s while the gradient method shows better correlation with the 

rawinsonde BLH.  The Weather Research and Forecasting (WRF) model for the inland 

location (MMR) was compared to these profiler BLH estimates.  Although WRF 

reasonably predicts the general BL behavior, WRF underestimated the BLH by several 

hundred meters. The WRF diagnosed BLH using the bulk Richardson number was 

inconsistent with the WRF predicted BL thermodynamics structure.  An alternative BLH 

detection scheme using a gradient method of BLH detection is proposed and tested for 

WRF, showing better results.   
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I. INTRODUCTION 

A. BASICS OF THE ATMOSPHERIC BOUNDARY LAYER (ABL) 

The atmospheric boundary layer (ABL) is defined as the part of the troposphere 

that is directly influenced by the presence of the earth’s surface, and responds to surface 

forcings with a timescale of one hour or less (Stull, 1988).  The structure and evolution of 

the ABL are of great importance to military applications.  Of particular interest is the 

height of the boundary layer, (BLH, or Zi), which is a key input parameter to the 

atmospheric transport and dispersion (ATD) models.  Since the daytime boundary layer 

(BL) over land is generally well mixed, the BL is sometimes referred to as the mixed 

layer and Zi is hence referred to as the mixing height.  The BL thickness is quite variable 

in time and space, ranging from hundreds of meters to a few kilometers.  The top of the 

ABL is capped by a layer of stable thermal stratification, which is commonly known as 

the capping inversion.  The interface between the capping inversion and the BL is called 

the entrainment zone (EZ) which separates the BL from the free atmosphere (FA).  The 

daytime overland BL is often capped by a well-defined inversion, which rises each 

morning in response to the growing convective activity below and fades or recedes as the 

surface heating tapers off near sunset.  At night or over the ocean when the ABL has 

stable stratification, the top of the BL may not be well defined.   

Over land surfaces, the BL has a well-defined structure that evolves with the 

diurnal cycle (see Figure 1).  The three major components of the structure are the surface 

layer (SL), the mixed layer (ML), the residual layer (RL), and the stable boundary layer 

(SBL).  The focus of  this thesis is on defining the ML top, and more specifically Zi.  The 

SL is the region at the bottom of the boundary layer when turbulent fluxes and stress vary 

by less than 10% of their total magnitude.  The ML makes up approximately 35-80% of 

the convective boundary layer (CBL).  This layer is characterized by a nearly constant 

specific humidity and virtual potential temperature profile with height.  The ML is the 

layer that contains large thermals and sometimes is complicated by the presence of 

horizontal roll vortices and mesoscale cellular convective activities.   The SBL develops 
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after sunrise near the surface while the remaining daytime ML becomes the residual layer 

when the surface forcing is cutoff after the development of the surface-based stable layer. 

  

 

Figure 1.   A typical diurnal evolution of the atmospheric boundary layer over a 24-hour 
period (From: Stull 1988). 

 

B. BOUNDARY LAYER HEIGHT IN VARIOUS APPLICATIONS 

The BL is very important because this is where people spend most of their lives.  

Daily weather forecasts of fog, dew, frost, and temperatures are essentially boundary 

layer forecasts.  Pollution is trapped in the boundary layer, and turbulence is prevalent as 

well.  To the US Department of Defense (DoD), the boundary layer parameters are 

important when it comes to dispersion and transport modeling of chemicals. The 

Department of Defense (DoD) and other government agencies use several dispersion 

models including the Second-order Closure Integrated Gaussian Puff model (SCIPUFF), 

the DoD certified Lagrangian Gaussian D2-Puff model (D2PUFF), Hazard Prediction and 

Assessment Capability (HPAC), and various Gaussian plume models.  These dispersion 

models are used in the detection of Chemical, Biological, Radiological, Nuclear, and 
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High Yield Explosive (CBRNE) hazards as well as in air pollution hazard estimates. 

Uncertainties in the meteorological input account for more than half of the total 

uncertainty in predicting the observed one-hour ground level concentrations using a 

complex second order closure plume model.  Among all the meteorological input, the BL 

height is a critical variable to dispersion modeling as errors in BL height result in 

significant errors in forecast concentrations. Therefore, there is a need to quantify the 

uncertainties in BL height as input to dispersion models (Rao, 2004).   

Boundary layer height is also an important scaling length for the normalization of 

boundary layer parameters such as fluxes and variance including vertical gradients of 

wind, potential temperature, and moisture. In addition, BL height is also involved in 

some of the boundary layer parameterizations in mesoscale models where turbulent 

kinetic (TKE) schemes depends heavily on the parameterization of turbulence length 

scales to describe eddy diffusion coefficients for momentum and scalar mixing (e.g., 

Therry and Lacarrere, 1983).  

C. BOUNDARY LAYER HEIGHT FROM MODELS 

Boundary layer height is not a predicted quantity in mesoscale models.  In 

general, it is diagnosed based on the bulk Richardson number.  BLH is not a routine 

measurement from weather stations, either.  Frequently, particularly when used as input 

to dispersion models, it is derived from mesoscale forecast models.  However, few 

studies have focused on evaluation of the BLH from mesoscale models.  Angevine and 

Mitchell (2001) conducted an evaluation of the National Centers for Atmospheric 

Predictions (NCEP) mesoscale Eta model for the convective boundary layer.  Their 

studies indicated that the models were fairly accurate in their depiction of the mixing 

height.  Other previous research has identified substantial errors in the BLH from 

mesoscale models.  Eleuterio et al. (2004), e.g., examined BL height from the Navy’s 

Coupled Ocean and Atmospheric Prediction System (COAMPS) in comparison with 

aircraft measurements in cases of stratocumulus-topped boundary layers in the coastal 

California region.  They found that the BLH from COAMPS was in general 

underestimated by 100 m.  Under certain cases, the BLH was significantly lower than the 
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observations by several hundred meters.  Clearly, a better evaluation of the BLH 

generated from the mesoscale models is needed for various atmospheric conditions.   

D. BOUNDARY LAYER HEIGHT FROM OBSERVATIONS 

Boundary layer height can be obtained from observations through a variety of 

measurement variables. Using a research aircraft equipped with turbulence measurement 

capability, the local boundary layer top can be identified with accuracy of about 10 m or 

less when the aircraft penetrates through the boundary layer top and identifies the 

turbulent layer (Wang et al, 1999).  With the ground-based measurements, the most 

straight-forward method is through the analysis of the vertical variations of temperature, 

humidity, wind (Norris, 1998; Johansson et al, 2001, Zeng et al., 2004) and even the 

balloon ascent/descent speed of the routine rawinsonde (Johansson and Bergstro 2005). 

Boundary layer height defined from a rawinsonde sounding is generally taken as the true 

observed BLH although variability may result from different criteria of the temperature 

gradient used to define the boundary layer top and that the local boundary layer height 

from a single balloon sounding is likely different from the mean boundary layer height .   

In recent years, in addition to radiosonde data, remote sensing data from sodar 

(Vogelezang and Holtslag 1996), lidar (Drobinski et al. 1998) and wind profiler/RASS 

systems have been used extensively to detect boundary layer height from continuous 

measurements of the radar reflectivity at different wavelength. Unlike the BLH from 

aircraft or rawinsonde, the radar detected BLH are continuous in time for a long period.  

Cohn and Angevine (2000) shows, using their  results from the ‘96 Flatland experiment 

that profiles from single rawinsonde ascents give only rough estimates of mixing height 

and may be at times completely misleading for the EZ depth.  They used rawinsonde 

derived BLH to compare with that from the profiler data and found  that the discrepancies 

can be significant if the rawinsonde ascends in a thermal rather than between thermals.  

For this reason, radar wind profilers are considered dependable means to estimate the 

height of the mixed layer.  On the other hand, since the vertical resolution of the profiler 

measurements is relatively coarse, on the order of 60 to 100 m, and there exists different 

algorithms for deriving BLH from the profiler measurements, the accuracy of the BLH 
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from profilers needs to be examined as well. Nevertheless, the abundance of data from 

the profiler/RASS system makes it possible for systematic evaluation of BLH from 

mesoscale models under various conditions.   

E. SCOPE OF RESEARCH 

The objective of this research is to use continuous profiler/Radio Acoustic 

Sounding System (RASS) measurements to examine the uncertainty of the BLH from 

mesoscale models.  The main focus is on the daytime CBL over land.   The boundary 

layer height was detected using two methods, which will be described in more detail in 

Chapter IV, and was validated against those from the rawinsonde soundings.  In Chapter 

II, the general characteristics of the ABL are discussed, including turbulence and physical 

processes that modify turbulent kinetic energy (TKE).  Chapter III describes the 

measurements used in this thesis from the Marine Atmosphere Measurement Lab 

(MAML) at the Naval Postgraduate School (NPS) and Miramar measurement site 

(MMR). Chapter IV discusses the BLH detection schemes using the profiler/RASS 

measurements and evaluates the results of BLH using the NPS detection schemes in 

comparison with those from rawinsonde measurements.  Main results will be given in 

Chapter V, where the BLH from the Weather Research and Forecasting (WRF) model 

will be compared to the BLH from profiler/RASS system.  Testing of an alternative 

method to diagnose BLH from WRF is also discussed in Chapter V.  Finally, Chapter VI 

will give a summary, conclusions, and recommendations from this research.  The 

research subject directly supports recommendations brought forth by the Joint Action 

Group on Federal Research and Development dealing with atmospheric transport and 

diffusion.   
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II. BOUNDARY LAYER AND MODEL BACKGROUND 
DISCUSSION 

A. BOUNDARY LAYER PHYSICAL PROCESSES 

The atmospheric boundary layer is characterized by the presence of turbulence 

generated by the mean wind shear or by buoyancy flux.  Usually, the largest wind shear is 

found near the surface although moderate wind shear also present at the boundary layer 

top. Buoyancy flux contributes directly to the generation/consumption.  On a sunny day 

overland, surface buoyancy flux is a major source of turbulence which results in the 

daytime convective boundary layers. Turbulence generated by buoyancy flux is also seen 

in the cloud-topped boundary layers where positive buoyancy flux at the upper boundary 

layer is a result of radiative cooling at the cloud top.  In the stable boundary layer, wind 

shear becomes the sole source of turbulence as the negative buoyancy flux consumes 

turbulent kinetic energy.  The generation of turbulent kinetic energy (TKE) is depicted in 

Eq. (1) below for horizontally homogeneous conditions.   
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where e  represents TKE, ε  is the turbulent dissipation rate, vθ  is the virtual potential 

temperature, u, v, w represent the perturbation wind components, while VU ,  are the 

mean horizontal wind components.  The first term on the right-hand-side (RHS) of Eq.(1) 

is the buoyancy production/consumption term of TKE, the second and third terms on the 

RHS represent TKE tendency caused by mean wind shear, the fourth and fifth terms 

represent turbulent transport and pressure transport, respectively.  In a clear convective 

boundary layer, turbulence is generated near the surface by mainly buoyancy flux at the 

surface (and sometimes together with wind shear) and is transport upward to the upper 

mixed layer through turbulent transport (Deardorff 1980).  Figure 2 illustrates the TKE 

balance in a typical clear convection boundary layer as discussed above.  
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Figure 2.   Normalized terms in the turbulence kinetic energy equation.  The shaded areas 
indicate ranges of values.  All terms are divided by w3

*/zi, which is on the order of 
6×10-3 m2s-3.  (From: Stull) 

 

In response to surface and upper air forcing, boundary layer mean profiles evolves 

accordingly.  Figure 3 shows several examples of the virtual potential temperature 

profiles during a diurnal cycle starting at around 1600 local time.  The corresponding 

time of the day for each panel is indicated in Figure 1.  The presence of the mixed layer is 

seen during daytime (S1) which is capped by a strong temperature inversion.  Very often, 

a significant decrease in water vapor also exists across the inversion when the difference 

in specific humidity between the mixed layer and the free atmosphere is on the order of 

several to 10 g kg-1.  The clear convective boundary layer will be the focus of this study 

when the BLH from WRF are compared to those from observations.   
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Figure 3.   Profiles of mean virtual potential temperature showing the boundary evolution 
during a diurnal cycle starting at about 1600 local time.  S1-S6 identify each 

sounding with an associated launch time. (From: Stull) 

 

B. ENTRAINMENT ZONE AND CHARACTERISTICS OF THE MIXED 
LAYER TOP 

The entrainment zone (EZ) is the region of statically stable air at the top of the 

ML, where there is entrainment of FA air downward and overshooting thermals upward. 

In case of  free convection, buoyant thermals from the surface layer gain momentum as 

they rise through the mixed layer.  Upon reaching the warmer FA, they find themselves 

negatively buoyant, but overshoot a short distance because of their momentum, which is 

called “penetrative convection” (Stull, 1988).  This process results in the undulating 

structure as depicted in Figure 4 below.   The EZ can be up to 40% of the depth of the 

ML.  The top of the EZ is defined as the altitude of the highest thermal in the region.   
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Figure 4.   The EZ can be defined in terms of the fraction of FA air.  (a) Overshooting 
thermals cause rawinsonde sounding to indicate improper values of zi.  Solid line 
is the local ML top, while the dashed line is the average ML top, zi.  (b) Variation 

of fraction of FA air with height in the EZ as measured by horizontal averages 
(solid line) and a point sounding (dotted line) (From: Stull). 

 

Defining the bottom of the EZ is more difficult because there is no sharp 

demarcation.  One approach is to take the altitude where about 5-10% of the air on the 

horizontal plane has FA characteristics (Deardorff, et al., 1980; Wilde, et al., 1985).    

Since the EZ is also statically stable, the buoyancy flux is normally negative in the EZ.  

Hence, an alternative method to define the bottom of the EZ is to find the level where the 

buoyancy flux becomes negative.   

The average ML depth, or the boundary layer height, is defined as the altitude 

where 50% of the air has FA characteristics on a horizontal average as illustrated in 

Figure 4.  Thus, the boundary layer height is a statistical quantity representing an 

ensemble average of the 50% mixing level.  Unfortunately, measurements of the mixing 

fraction and its spatial variation are never truly available even with a research aircraft 

flying near the top of the mixed layer.  With in-situ measurements, most likely we have 

balloon soundings, dropsondes, or aircraft slant-path penetrations that go through the 

mixed layer top at a specific location.  These in-situ penetrations are point measurements.  

Boundary layer heights from these individual penetrations may differ from the average as 

illustrated in Figure 4.  Obtaining averages of the mixed layer height from multiple 

penetrations at the same time is thus highly desirable but is rarely available.  From this 

perspective, BLH from remote sensors, which will be discussed later, is advantageous.     
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C. THE STABLE BOUNDARY LAYER 

The stable boundary layer (SBL) is one of the most difficult problems in 

boundary layer meteorology.  The typical depth of the SBL is 100-500 m. Because it is 

often observed at nighttime overland, it is also called the nocturnal boundary layer in that 

situation although SBL is observed also during the day and in marine environments.  The 

following figure depicts typical profiles of mean absolute temperature, mean potential 

temperature, mean wind speed, and mean specific humidity.   

 

Figure 5.   Typical SBL profiles of mean (a) absolute temperature, (b) potential 
temperature, (c) wind speed, and (d) specific humidity. (From: Stull) 

 

Defining the SBL height can be a difficult process since the height can be defined 

from different criteria.  For instance, the top of the SBL could be the height where the 

lapse rate is adiabatic, or it could be the location of the nocturnal jet level.  SBL’s were 

not investigated in this study, however further investigation into model comparison and 

SBL height should be done to understand the complete strengths and weaknesses of the 

WRF model when detecting BLH at any hour of the day.   

 

 

 



 12

D. PBL SCHEMES AND BOUNDARY LAYER HEIGHT IN WEATHER 
RESEARCH AND FORECASTING (WRF) MODEL  

1. General Information 

The Weather Research and Forecasting (WRF) Model is a next-generation 

mesoscale numerical weather prediction system designed to serve both operational 

forecasting and atmospheric research needs. It features multiple dynamical cores, a 3-

dimensional variational (3DVAR) data assimilation system, and a software architecture 

allowing for computational parallelism and system extensibility. WRF is suitable for a 

broad spectrum of applications across scales ranging from meters to thousands of 

kilometers.  

The effort to develop WRF has been a collaborative partnership, principally 

among the National Center for Atmospheric Research (NCAR), the National Oceanic and 

Atmospheric Administration (NOAA), the National Centers for Environmental Prediction 

(NCEP) and the Forecast Systems Laboratory (FSL), the Air Force Weather Agency 

(AFWA), the Naval Research Laboratory, Oklahoma University, and the Federal 

Aviation Administration (FAA). WRF allows researchers the ability to conduct 

simulations reflecting either real data or idealized configurations. WRF is currently in 

operational use at NCEP. The Air Force has also recently starting running the WRF 

model in the early summer of 2007. Currently, the model is run operationally over areas 

overseas but is not yet being run over the CONUS (Continental United States).  The Air 

Force will eventually transition fully from MM5 to WRF for operational use over the 

CONUS. 

2. Planetary Boundary Layer Schemes in WRF 

The PBL scheme in a mesoscale model is responsible for vertical sub-grid-scale 

fluxes due to eddy transports in the whole atmospheric column, not just the BL. Thus, 

when a PBL scheme is activated, explicit vertical diffusion is de-activated with the 

assumption that the PBL scheme will handle this process.   

The PBL schemes provide atmospheric tendencies of temperature, moisture 

(including clouds), and horizontal momentum in the entire atmospheric column. Most 



 13

PBL schemes consider dry mixing, but can also include saturation effects in the vertical 

stability that determines the mixing. The schemes are one-dimensional, and assume that 

there is a clear scale separation between sub-grid eddies and resolved eddies. This 

assumption will become less clear at grid sizes below a few hundred meters, where BL 

eddies may start to be resolved, and in these situations, the scheme should be replaced by 

a fully three-dimensional local sub-grid turbulence scheme such as the TKE diffusion 

scheme. (NCAR, 2006) 

The three choices of PBL schemes are summarized in Table 1.  The Medium 

Range Forecast Model (MRF) scheme is described in Hong and Pan (1996). This PBL 

scheme employs a so-called counter-gradient flux for heat and moisture in unstable 

conditions. It uses enhanced vertical flux coefficients in the PBL, and the PBL height is 

determined from a critical bulk Richardson number. It handles vertical diffusion with an 

implicit local scheme, and it is based on local Ri in the FA. (NCAR, 2006) 

Table 1.   The basic features of the PBL schemes in Advanced Research Weather (ARW) 
(From: NCAR Tech Note)  

 
 

The Yonsei University (YSU) PBL scheme is the next generation of the MRF 

PBL, also using the countergradient terms to represent fluxes due to non-local gradients. 

This adds to the MRF PBL an explicit treatment of the entrainment layer at the PBL top. 

The entrainment is made proportional to the surface buoyancy flux in line with results 

from studies with large-eddy models. The PBL top is defined using a critical bulk 

Richardson number of zero (compared to 0.5 in the MRF PBL), and is therefore 

effectively only dependent on the buoyancy profile which, in general, lowers the 

calculated PBL top compared to MRF. (NCAR, 2006) 
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The Mellor-Yamada-Janjic (MYJ) PBL parameterization (Janjic, 1990, 1996, 

2002) represents a nonsingular implementation of the Mellor-Yamada Level 2.5 

turbulence closure model (Mellor and Yamada, 1982) through the full range of 

atmospheric turbulent regimes.  In this implementation, an upper limit is imposed on the 

master length scale. This upper limit depends on the TKE as well as the buoyancy and 

shear of the driving flow. In the unstable range, the functional form of the upper limit is 

derived from the requirement that the TKE production in the case of growing turbulence. 

In the stable range, the upper limit is derived from the requirement that the ratio of the 

variance of the vertical velocity deviation and TKE cannot be smaller than that 

corresponding to the regime of vanishing turbulence. The TKE production/dissipation 

differential equation is solved iteratively.  

The boundary layer height (BLH) in most of the PBL schemes in WRF are 

defined at the lowest model level when the Bulk Richardson number exceeds a critical 

value.  The local bulk Richardson number (Rib) is defined as:  

22 )()(  V+ U 

z)g(
 R

v
v

ib
∆∆

∆∆
=

θ
θ  

Where z∆ , vθ∆ , U∆ , and V∆  are thickness and change of potential temperature and 

horizontal wind components across the layer, respectively.  Theoretically, one can use the 

gradient Richardson number to determine the dynamic stability of the flow in comparison 

with the Critical Richardson number (with a value of 0.25).  When this criterion is 

applied to the model generated flow field, the bulk Richardson number is used instead 

because finite differencing is used in place of the vertical gradient.  As a result, the 

critical value used to determine the highest turbulent level may not be the original critical 

Richardson number.  

Based on Hong and Pan (1996) the bulk Richardson number for diagnosing BLH 
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where Ribcr is the critical bulk Richardson number, θs and θva are virtual potential 

temperatures near the model surface and at the lowest sigma level, respectively.  θv(h) is 

the virtual potential temperature and U(h) is the horizontal wind speed at the boundary 

layer top (h).   
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III: INSTRUMENTATION AND DATA 

The major instruments used for this study is the 915-MHz wind profiler and the 

Radio Acoustic Sounder System (RASS).  We also used measurements from the 

rawinsonde system to identify the boundary layer height.  These instruments will be 

discussed in this chapter.   

A. BASICS OF THE RADAR WIND PROFILER AND RADIO ACOUSTIC 
SOUNDER SYSTEM (RASS) 

The 915-MHz boundary layer wind profiler (Figure 6) was developed at the 

National Oceanic and Atmospheric Administration (NOAA) Aeronomy Laboratory.  The 

systems are sensitive Doppler radars, designed to respond to refractive index fluctuations 

in clear air.  The 915-MHz radar has a 32.8-cm wavelength. This relatively short 

wavelength allows a relatively small antenna size.  The aperture of the antenna, which is 

controlled largely by practical considerations, determines two other characteristics of the 

antenna, the beam width and the antenna gain. The beam width is inversely proportional 

to the aperture. The antenna gain is directly proportional to the aperture. (Helsinki, 2008) 

 

 

Figure 6.   NOAA 915MHz boundary layer wind profiler and RASS. (From:  Argonne 
National Laboratory) 
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The RASS works through the properties of sound wave propagation. The RASS 

system, usually composed of four acoustic sources (one on each side of the profiler 

antenna) transmits an acoustic wave directed vertically. The profiler uses the acoustic 

wave as a target, receiving and processing the resulting backscatter and effectively 

measuring the speed of sound propagation. The profiler can compute virtual temperature 

(Tv) profiles because the speed of sound is affected by air temperature and humidity. Raw 

temperature data are stored in the moment and spectral data files, but separated from 

wind data.  Variations in speed of sound can be converted to a virtual potential 

temperature profile of the atmosphere. Figure 7 shows an example of the profiler/RASS 

measured wind and temperature profiles.   The virtual potential temperature is estimated 

from the measured virtual temperature at each measurement level. 

 

Figure 7.   An example of the vertical profiles of a) potential temperature (converted 
from the virtual temperature measurement), b) air temperature, and c) horizontal 
wind components from profiler/RASS system.  The measurements were made on 
22 Aug 2002 at 0900 PST from the NPS Marine Atmospheric Measurement Lab 

at Fort Ord. 

      a)            b)               c) 
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B. ATMOSPHERIC EFFECTS ON PROFILER PERFORMANCE 

The range performance of all profilers depends on atmospheric conditions, which 

can change dramatically and rapidly. The conditions that affect profiler performance 

include temperature, humidity, turbulence intensity, and precipitation.  

Tracking refractive irregularities, which are carried by the wind, reveals 

information about the wind itself. The profiler computes height by using the time interval 

between transmission of the pulse and reception of the return signal. However, wind 

speed and direction are determined based on the Doppler principle. A backscattered wave 

will shift in frequency because of the motion of the target relative to the observer. A 

frequency higher than the transmitted frequency indicates that the wind is moving 

towards the profiler. A frequency lower than the transmitted frequency indicates the wind 

is moving away from the profiler. The profiler detects these small shifts in the frequency 

of the backscatter and translates them into wind velocity data. 

The amount of moisture in the atmosphere affects the height range performance of 

the profiler. Generally, the more moisture, the better the profiler works for winds because 

of the large variations of refractive index.  Marine environments make good profiler sites 

because of the moisture usually prevalent in those regions.  The RASS benefits from high 

humidity levels also. When the atmosphere contains more moisture, there is less 

attenuation (decrease) of the acoustic signal with range.  

The amount of turbulence in the atmosphere also affects the range performance of 

the profiler. The more turbulence in the atmosphere, particularly turbulence on a scale of 

one-half the profiler wavelength, the better the profiler works.  Turbulence is also 

beneficial to RASS operation. Turbulence helps distribute the acoustic wavefront, helping 

increase the range in the presence of winds. The wavelength of the acoustic signal must 

be half that of the radar signal in order to measure the velocity of propagation of the 

acoustic signal.  

Most types of precipitation such as rain, snow, and hail can affect the 

performance of the profiler. When precipitation moves in a direction that is different from 
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the air around it, the vertical beam measures the movement of the hydrometeors rather 

than the vertical component of the wind. However, if the precipitation is carried with the 

wind, then the horizontal winds might still be measured because the particle velocity in 

the off-zenith beam can be corrected with the vertical beam measurement, assuming 

spatial homogeneity. For RASS, virtual temperature measurements are usually poor 

quality during precipitation. During precipitation, if the hydrometeor fall velocity is 

measured and it differs from the vertical wind velocity, the resulting virtual temperature 

measurements will be incorrect.  

Ground clutter most often affects the quality of data in the lower range gates. 

High winds can cause clutter signals from objects such as trees and power lines to exhibit 

sufficient Doppler velocity width that the profiler's ability to screen out this clutter is 

overwhelmed. Choosing sites with minimal ground clutter will improve the range and 

data quality of the profiler.  High winds can adversely effect the RASS virtual 

temperature measurement in two ways. Increased ground clutter can create incorrect 

vertical velocity values used for temperature correction. High winds may also reduce the 

range of measurement of RASS by displacing the acoustic signal away from the radar 

beam.  

Temperature has more of an effect on RASS than on the profiler's wind 

measurement. Acoustic attenuation varies as a function of temperature, humidity, and 

pressure. Cold dry air exhibits highest attenuation, which can exceed -40 dB per 

kilometer. Very moist or warm air propagates acoustic signals better, resulting in 

improved range for virtual temperature measurement. (Helsinki, 2008) 

C. RAWINSONDE 

Rawinsonde is the most common upper-level in situ measurements in the field of 

meteorology.  During their ascent, the balloon-borne instruments radio back to the 

ground-based receiving station with a nearly continuous stream of information until the 

balloon bursts at approximately 10 mb. The rawinsonde system provides measurements 

of air temperature, pressure, moisture, and wind information at various levels in the 

atmosphere.  
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The drifting of a radiosonde provides an indirect measure of the wind speed and 

direction at various levels throughout the troposphere where the location of the balloon at 

each time is tracked through GPS or previously Loran-C systems.   

The rawinsonde data from the NOAA weather stations are normally encoded and 

transmitted over a communications network to NCEP. At this center, the data can be 

processed for analysis on upper air charts and for use in numerical weather prediction 

models. To accomplish this task, all upper air stations are to report RAOB data for certain 

mandatory pressure levels. To speed the transmission process, the RAOB operator 

encodes only the temperature and dewpoint data for significant pressure levels along with 

the mandatory pressure levels. The significant pressure levels are those points ascertained 

from the plotted sounding where a significant change in the temperature and or dewpoint 

profile is detected (Hopkins, 1996).   

D.  DATA USED FOR THIS STUDY 

The data we used for this thesis research were obtained from two measurement 

sites with the same profiler/RASS systems.  The Meteorology Department of the Naval 

Postgraduate School maintains the Marine Atmospheric Measurement Lab (MAML) at 

Fort Ord, CA located at (36.69 N, 121.76W) at 51 m elevation above sea level (ASL) and 

is situated approximately five km inland from the coastline.  The instruments maintained 

at the site include a profiler/RASS sounding system, surface measurements, and a laser 

ceilometer.  The profiler/RASS system operates continuously with measurements every 

30 minutes.  Surface measurements were recorded as two-minute averages.  Data from 

the summer months between 2000 and 2003 at this location were used to develop and 

validate the BLH detection scheme.    Another location, Miramar, CA (MMR), which 

also has a profiler/RASS system as well as rawinsonde data was investigated for 

comparison and verification purposes.  Data from this site was collected from the summer 

months of 2007.   The MMR site is located approximately eight miles inland in southern 

California outside of San Diego.  It is co-located with the Doppler wind profiler used by 

NOAA and the military. 
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The rawinsonde data from the station at MMR is used to evaluate the BLH 

measurements from the profiler/RASS system.  The rawinsonde measurements at MMR 

were made twice daily at 00Z and 12Z and the data were archived at the University of 

Wyoming at the Department of Atmospheric Sciences and was downloaded from 

http://weather.uwyo.edu/upperair/sounding.html.  These soundings were achieved at the 

significant levels only.  For purpose of this study, we have used measurements from July, 

August, and September in 2006 and 2007. The Miramar-San Diego profiler site operates 

the 915MHz profiler/RASS system hourly throughout the year.  The profiler operates in 

two modes: the low mode starts the profiling at five minutes past the hour and has a 

vertical resolution of about 60 m with the first range gate at about 96 m above ground; 

the high mode profiling starts 1.5 minutes later and has a vertical resolution of about 100 

m with the first range gate at about 200 m above ground.  The RASS measures the virtual 

temperature profile at the beginning of each hour with a vertical resolution of 60 m and 

the first range gate at 90 m.   
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IV: BOUNDARY LAYER HEIGHT DETECTION FROM 
OBSERVATIONS 

A. DETECTING BOUNDARY LAYER HEIGHT FROM RAWINSONDE 
PROFILES 

The clear convective boundary layer is often topped by a strong temperature 

inversion accompanied by significant decrease of water vapor across the inversion as 

illustrated in Figure 1.  This property has been used to identify the local BLH from a 

single rawinsonde where we define the BLH at the base of the inversion layer.  Figure 8 

shows an example of the rawinsonde profiles going through the low-level atmosphere 

measured by the NPS rawinsonde system.  The figure uses the original data received at 

two second intervals.  At an ascent rate of several meters per second, the vertical 

resolution of the balloon sounding is less than 10 m.  In Figure 8, the temperature 

inversion and the sharp decrease of specific humidity at the boundary layer top are 

apparent.  The BLH is defined as the base of the temperature inversion at 550 m.   

 

Figure 8.   Vertical profiles of specific humidity, relative humidity (RH), potential 
temperature (θ), temperature and dewpoint temperature from a rawinsonde ascent 

off the coast of southern California (32.98N, 118.51W) on June 1, 2003.  The 
BLH is defined as the base of the temperature inversion at about 550 m.   
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Sounding data downloaded from the NOAA data center appear to be different as 

the data were recorded at the significant levels only.  However, the main feature of the 

sounding profiles should be kept in the selection of significant levels, including the 

altitude of the inversion layer.  An example of the sounding profiles from the MMR site 

is shown in Figure 9.  From this figure, we can identify the BLH at about 640 m.     

 

Figure 9.   Vertical profiles of specific humidity, relative humidity (RH), potential 
temperature (θ), temperature and dewpoint temperature from a rawinsonde ascent 

at the MMR site on August 11, 2007.  The BLH is defined as the base of the 
temperature inversion at about 550 m. 

 

Using the same method, we obtained BLH from six summer months (July, 

August, and September 2006 and 2007) from the MMR site.  These BLH’s are used to 

compare to those derived from the profiler/RASS system to evaluate the remotely-sensed 

BLH.  However, it is important to keep in mind that profiles from single rawinsonde 

ascents may not be representative of that of the average BLH because the rawinsonde will 

find a different result if it ascends in a thermal rather than between thermals.  For fair 

comparisons, BLH’s from many soundings should be used.    
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B. DETECTING BOUNDARY LAYER HEIGHT FROM PROFILER/RASS --- 
PREVIOUS STUDIES 

1. Boundary Layer Height and Signal-to-Noise-Ratio  Profiles 

Measuring the BLH is complex due to the fact that the inversion height is often 

higher than stationary measurement equipment can reach.  Balloon and aircraft soundings 

have been used but may not be completely representative in the spatial or temporal 

scales.  Therefore acoustic, microwave, and optical techniques have been used and 

studied to obtain the best estimate of BLH in the atmosphere. 

The entrainment in the interfacial layer can create a strong vertical gradient in the 

temperature and humidity profiles, which causes a maximum in the profile of the 

refractive index structure parameter 2
nC , resulting in an enhancement of sodar and 

ultrahigh frequency (UHF) profiler returns. Numerous studies based on numerical 

modeling and/or experimental data have shown that the vertical profiles of the refractive 

index structure parameter 2
nC  have an pronounced maximum near the base of the capping 

inversion layer or where the humidity gradient is large (e.g., Burk 1980;Wyngaard and 

LeMone 1980;Angevine et al., 1994).  This relationship is based on the assumptions that 

refractive index irregularities are in equilibrium with steady-state turbulence and that the 

radar wavelength lies in the inertial subrange of the turbulence (Ottersten 1969). Since 

the range-corrected Signal-to-Noise-Ratio (SNR) of the profiling radar is proportional to 

the refractive index structure parameter, 2
nC , in clear air (White et al. 1991), defining the 

BLH from the profilers thus becomes an issue of detecting the level of maximum SNR.   

A maximum value in backscattered intensity profiles can be also found in clouds 

because of the enhancement of reflectivity by strong turbulent mixing within the cloud 

and entrainment mixing near cloud boundaries (Angevine et al., 1994).  In addition, since 

the residual layer from the previous day is also capped by a thin layer of temperature 

inversion and moisture decrease (Figure 3), a 2
nC  maximum may also observed at the top 

of the residual layer.   Other factors that may result in local peak of the SNR from the 

profilers include precipitation and biological targets such as insects and birds (Angevine 
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et al., 1994).  Because of these complexities, various methods aimed at identify the 

maximum SNR corresponding to the BLH has been studied in the past.   

2. Boundary Layer Height Detection Method Based on Signal-to-Noise-
Ratio  

The boundary-layer profiler can provide continuous measurements of CBL height 

with very good time resolution (30 minutes or less) and good height resolution (60-100 

m). These measurements were pioneered by White et al. (1991a,b) and was later 

described in White (1993).     White (1993) simply assigns the CBL height as the level of 
2
nC or SNR maximum in an instantaneous vertical profile. It can provide good time 

resolution of the estimated CBL height since it estimates the height from the SNR 

maximum of a single profile.  However it , may erroneously detect SNR peaks due to 

other complicating factors such as a cloud layer or the residual layer top.   

Angevine et al. (1994) proposed a median filtering method that is based on an 

increase in backscatter intensity in the same way as the maximum backscattered intensity 

method. However, a median filter is used to remove 2
nC peaks from the enhancement of 

reflectivity by clouds, stable residual layer, precipitation, and biological targets such as 

insects and birds. Angevine et al. (1994) suggested two algorithms to find CBL height. In 

the first, a 2
nC  peak in each profile is selected and then the median value of the heights at 

which the peaks occur during the considered period is determined to be the CBL height. 

The other is that after taking the median value of the 2
nC  values at each range gate during 

the considered period, the height that has the peak value in the median 2
nC  profile is 

determined as the CBL height.  The first method was actually used in Angevine et al 

(1994).  With this method, hourly values of boundary layer height for each profiler can be 

obtained.  This same method was applied to measurements from the Flatland’96 

experiment where the profiler BLH was compared to the radiosonde BLH. Overall, they 

showed close agreement with a slight bias towards a higher measurement from the 

profiler (see Figure 10).   
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Figure 10.   BLH as determined by radiosonde compared to profiler peak reflectivity. The 
mean zi from the profiler  is 1181m, the mean zi from the radiosonde is 1125m, 

and the correlation coefficient is .88 from 150 points.  The dashed line represents 
perfect correlation (one-to-one), the dotted line shows the mean difference, and 

the two solid lines are at the mean difference plus and minus the standard 
deviation of the mean difference. (From Grimsdell and Angevine, 1998) 
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Figure 11.   Radiosonde zi and profiler zi stratified by the presence of cloud during the 
hour.  For clear conditions, the mean profiler zi is 1151m and the mean 

radiosonde zi is 1110 m.  The correlation coefficient is .97 for 67 points.  For 
cloudy conditions, the mean profiler zi is 1207m and the mean radiosonde zi is 
1136m.  The correlation coefficient is .77 for 83 points. (From Grimsdell and 

Angevine, 1998) 
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Grimsdell and Angevine (1998) examined the effects of scattered cumulus on the 

detection of BLH using the method proposed by Angevine et al. (1994).  Figure 11 uses 

the same data as in Figure 10, except that the data were separated into cloud free and 

cloudy condition with a mean cloud fraction of 23%.  Here we see that reliable estimates 

of BLH can be made using wind profilers, particularly in the cloud-free conditions.  The 

presence of cloud apparently reduced the correlation between the SNR detected and the 

rawinsonde derived BLH’s. 

To deal with the situations where SNR profile has a double peak because of the 

residual layer and/or cloudy conditions, Heo et al. (2003) examined the behavior of the 

SNR peaks and proposed a new method by making joint use of peaks and vertical air 

velocity variance . The capability of their method to estimate the CBL height was 

compared to those by White (1993) or Angevine et al. (1994) and was found to be 

advantageous in the presence of double peaks in the SNR profiles.   

A relatively new approach in dealing with multiple peaks in the SNR profile is to 

involve the fuzzy logic techniques (Bianco and Wilczak, 2002).   “Fuzzy Logic” was a 

term coined by Dr. Lotfi Zadeh in 1962 (Sowell).  It is basically the way a human brain 

works, and this can be incorporated into computers and machines.  Bianco and Wilczak 

(2002) used a fuzzy logic approach to reduce or eliminate contamination of the radar 

moments, and to also include the variance of vertical velocity. Their fuzzy logic method 

first used a method of applying a fuzzy logic algorithm to the radar spectra to reduce the 

influence of clutter from a variety of sources, including ground clutter, radio frequency, 

and point targets.  A second fuzzy logic algorithm then used the clutter-suppressed radar 

SNR measurements to determine the depth of the ML.  This algorithm incorporated 

measures of the peak, gradient, and curvature of hourly median SNR profiles, as well as 

the profiles of hourly variances of SNR and vertical velocity.  When compared to the 

standard technique for estimating BL depths, the new method was found to be 

substantially more accurate.   

 With a similar fuzzy logic approach, Lee at al. (2004) also detected BLH using 

measurements from 1.29 GHz profiler operated by the Korean Meteorological 

Administration (KMA).  Their algorithm is divided into three steps. First, a fuzzy logic-
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based algorithm is applied to the incoming multiple peak data to identify the clear air 

signal. Second, a consensus algorithm is used on the identified clear air signal to reject 

outliers and the extract clear air signal as having a poor signal to noise ratio. Third, 

various quality control algorithms are used to ensure a reliable wind estimate.  The 

resultant BLH’s were used to evaluate BLH’s from a regional model diagnosed based on 

bulk Richardson number similar to that described in Hong and Pan (1996).   Overall, the 

wind profiler showed that a ML was better developed in a warm high pressure regime.  

However, the model ML heights compared to the profiler SNR data showed stable 

performance but tended to develop the ML too deep and too early, which may be a 

deficiency in the model’s PBL scheme.     

C. THE NPS BOUNDARY LAYER HEIGHT DETECTION METHODS 
USING PROFILER/RASS MEASUREMENTS 

In addition to detecting BLH from rawinsonde profiles, two methods have 

developed at NPS to detect BLH using measurements from profiler/RASS system.  These 

methods and their results are discussed in this section.  

1. Signal-to-Noise Ratio Method 

The algorithm to find the peak altitude corresponding to the BLH is similar to that 

of Angevine et al. (1994), but is different in specific details.  Similar to any other SNR 

based methods, the first step is to identify the SNR peaks from the range-corrected SNR 

profiles, which is done through a 'scanning' peak detection routine. The routine basically 

searches from lower to higher altitudes in the SNR profile to find an altitude for which 

there are both a lower altitude and a higher altitude with SNR values lower than the value 

at the examined altitude by at least a predefined threshold.  At the altitude with the 

maximum SNR between the above mentioned lower and higher altitudes (bounds), there 

is a local maximum (peak) if there is no local minimum (i.e. "negative" peak) between 

these bounds. The detection predefined threshold is set to be 3 dB and can be changed to 

test on the sensitivity of the algorithm to this threshold. The BLH height is estimated as a 

weighted average altitude using SNR between peak bounds as the weight instead of  
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taking it as simply the altitude of peak SNR. This estimate improves the resolution of 

BLH detection (provided that the peak is correctly detected) compared to the low 

resolution of the profiler. 

Furthermore, we use the upper and the lower bounds of six previously detected 

peaks (this number is empirically determined) as a detection 'memory' in order to limit 

the search of the SNR peak in the current profile within two times the maximum 

thickness of the inversion (maximum upper minus minimum lower bound of six previous 

peaks) from the previous (last) BLH detection. If there are RASS measurements available 

within 10 minutes from profiler data they can used to help in the temporal continuity of 

BLH detection in case the SNR profile 'memory' is lost (no BLH detected in the last six 

SNR profiles). For this purpose the gradient method is applied to the RASS virtual 

potential temperature profile (see next section) in order to find a first estimate of the 

lower bound (temperature inversion base) of SNR peak from the lowest height where the 

virtual potential temperature gradient value is larger than a predefined threshold (1 to 2 

K/100 m). BLH 'memory' is used to keep the temporal continuity of BLH detection, but 

this is not always feasible. For example, if a lower inversion develops (e.g. sea breeze 

front or ground based inversion), then at some time it will be become strong enough that 

it would be detected by RASS and, thus, there will be a step in the BLH temporal 

evolution from the detection routine. Thus, in addition to using a BLH 'memory' a quality 

control is applied at the end of the detection routine using the deviation of BLH values 

from their moving median with a window length equal to the 'memory' length. Outlier 

(i.e. wrong detection) BLH values are defined as those values whose deviation from the 

moving median is more than three times the median of all deviations in each day and are 

given an error flag. Median averaging is used instead of mean because median it is much 

less sensitive to the existence of outliers.  

Figure 12 is an example of the vertical profile of the SNR from three separate 

days, where the SNR detected BLH is noted by the dashed red line.  We can see that the 

detected BLHs are at one of the measurement levels corresponding to a local maximum 

in the SNR profile.   Figure 13 shows the time-height contour plots of the SNR from two  
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10-day periods in July 2007 with the BLH detected from the SNR method.  The image 

shows good agreement between the derived BLH and the height at which the range-

corrected SNR is a maximum.     

 

 

 

Figure 12.   Examples of SNR profiles from the MMR profiler site during July 2007.  The 
red line denotes the SNR max and is taken as the BLH. 
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Figure 13.   BLH derived from the SNR method  overlaid on SNR variations with time 
and height during July 2007 at the MMR site.   
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Figure 14 shows the effect of quality control of the detected BLH.  Here, the ‘good’ 

BLH were detected mostly from the low mode profiling.  It also shows that nearly all the 

outliers are biased toward higher BLH.  The amount of erroneous BLH suggests that it is 

necessary to implement the error flag to identify the outliers, which may be associated with 

clouds or local inversion/moisture decrease at higher levels.  In Figure 15, the SNR detected 

is overlaid on the contour plot of virtual potential temperature.  Here, the temperature profiles 

clearly shows the diurnal variation with daytime warming and nocturnal cooling.  However, 

the SNR detected BLH does not seem to show the similar diurnal variation as illustrated by 

Stull (1988, Figure 1).  The main reason for this apparent discrepancy lies in the detection of 

BLH at nighttime as the SNR method is not optimal for nighttime BLH detection (to be 

discussed later in this chapter).  Also, we can see that the daytime detected BLH appear to be 

in the inversion instead of the inversion base.  Thus, it is expected that the gradient method 

may give a lower BLH compared to those from the SNR method.   

 

Figure 14.   All BLH detected using the SNR method from both high- and low- mode 
profiling (blue circle).  The red * are the BLH detected from the profiler’s low-

mode measurements without error flags.  The green squares denote the error-free 
BLH from the high mode measurements.  Data were obtained from the MMR site 

in the summer 2007. 
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Figure 15.   SNR method detected BLH (pink squares) overlaid on virtual potential 
temperature for (a) 5-14 Jul 2007 and (b) 15-24 Jul 2007 at the MMR site. 

(a) 

(b) 



 36

2. The Gradient Method 

The gradient method uses the RASS virtual temperature only without input from 

the profiler. The idea is to identify the level where the potential temperature gradient 

exceeds a given threshold.  We first derived the virtual potential temperature (θv) based 

on altitude and the measured virtual temperature at each level.  The θv profile is then 

over-sampled with linear interpolation at 5 m vertical resolution in order to reduce the 

low resolution (60 m) effect (binned values) of RASS profile on BLH detection. Then a 

vertical smoothing of the over-sampled θv profile is made using a moving-average with a 

window equal to the original profile resolution in order to remove the high frequency 

content introduced by the linear interpolation. The vertical gradient of the θv is then 

calculated based on the smoothed θv profile.   

Detection of the BLH is made based on comparison of the calculated θv gradient 

with a given threshold of the θv gradient.  The BLH is defined using a weighted average 

of the altitudes where θv gradient satisfies the gradient requirements, where the weighting 

is the θv  gradient at each level. A quality control of BLH values is also applied using the 

same method as in the SNR profile peak method for the identification of outliers. 

Needless to say, the choice the gradient threshold should affect the detected zi.  

We tested on several values of the threshold compared to visual inspection of the vertical 

profiles of θv. A value of 2oC/100m appear to yield zi values that best matches those 

subjectively identified from the observed θv profiles.  In addition, if a profile has less than 

four levels, which implies low RASS signal, the profile is rejected without going through 

the gradient detection.   

Figure 16 illustrates the BLH detected using the gradient method overlaid on 

virtual potential temperature profiles.  It is seen, indeed, that the gradient detected BLH 

corresponds to the level with the largest θv gradient.  The gradient scheme seems to 

perform as expected.   
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Figure 16.   Examples of BLH derived from the gradient method (blue dots) overlaid on 
contours of virtual potential temperature (oC).  Data was taken at the MMR 

profiler site during July 2007.   
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3. Evaluation of the NPS Boundary Layer Detection Schemes 

Although the NPS half-hourly profiler/RASS measurements were used to develop 

and test the BLH detection schemes, systematic evaluation of the schemes requires a 

large amount of data, mainly rawinsonde and profiler/RASS measurements.  The 

Miramar-San Diego profiler site is chosen for several reasons.  First, it has the twice-

daily rawinsonde measurements as well as the hourly profiler/RASS measurements. 

Second, its location is within the WRF model simulation domain.  We therefore can use 

this site for model evaluation.  Thirdly, the inland location of the MMR site is ideal for 

the occurrence of the clear convective boundary layers, especially during the summer 

months.  It is thus likely that one can identify sufficient cases of the clear convective 

boundary layer from this site.  The results on validation of the BLH using both the SNR 

method and the gradient method will be shown using the MMR site data only.  For this 

purpose, we obtained BLHs from the twice-daily rawinsonde measurements from July, 

August, and September in 2006 and 2007.  Boundary layer height from the profiler/RASS 

system at the same time are also calculated using our BLH detection schemes.  Figure 17 

below details the comparison between BLH detected from the SNR and gradient methods 

for several 10-day periods in the summer of 2007 from the MMR site.  It shows that all 

three BLHs follow the same general pattern of the boundary layer evolution with, 

however, some apparent differences.  In general, SNR method yields higher BLH than 

the gradient method, while the BLH from rawinsonde generally lies in between those 

detected from profiler/RASS system.  Sometimes, the SNR method tends to overestimate 

the BLH (e.g. between DOY 213 to 215).  These may be the cases where significant 

moisture gradients exists above the boundary layer top so that the maximum SNR does 

not correspond to maximum temperature inversion (results from rawinsonde and gradient 

method).  On the other hand, the BLH from the gradient method seem to have problem at 

low levels where its detected boundary layer two persistent values around 200 and 300 m.  

This was likely related to the resolution effects when the smoothing schemes does not 

work well for small amount of input data.  The amount of underestimated BLH near 200  
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m or 300 m was reduced after the profiles with less than four vertical levels were 

excluded.  There, however, still exists some underestimated BLH for some night time 

boundary layers.   

In general, there is good agreement in the variation of the BLH as they all follow 

the same general variation.  The gradient method appears to detect the lower limit, while 

the SNR method gives the higher limit of the BLH.  More scattering is seen in the SNR 

method detected heights, particularly when the BL is deep.  
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Figure 17.   Comparison of BLH derived from the SNR method, the gradient method, and 
from rawinsonde profiles during summer of  2007 at the MMR site. 

 

Figure 18 further shows the zi detected from different methods relative to the 

vertical variation of potential temperature.  Again, here the gradient method detects the 

lower limits of the virtual potential temperature inversion and the SNR method detects 

the upper limit of the virtual potential temperature inversion.  The RASS observed 

potential temperature shows clearly the diurnal evolution of the boundary layer 

temperature over land with daytime warming and nighttime cooling.  Correspondingly, 

we also observed the diurnal variation of the boundary layer height that is deeper during 

the day and shallower at night.  This diurnal variation is vaguely seen in the gradient 

detected zi and some rawinsonde data, but not in the SNR detected zi.   
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Figure 18.   BLH from all three methods overlaid on a cross section of virtual potential 
temperature during July 2007 at the MMR site.  The blue dots represent the BLH 

from the gradient method and the pink dots represent the BLH from the SNR 
method.  Rawinsonde BLH are the connected red triangles. 

 

Table 2 below summarizes the comparison between rawinsonde detection and the 

SNR and gradient methods of BLH detection.  All data from the summer month of 2006 

and 2007 at MMR site are included in this table.  In general, the SNR method gives 

higher BLH but may overestimate the BLH, particularly at night.  Rawinsonde results 

show lower BLH at night which is also seen in the gradient method, but not in the SNR 

method. Apparently, the SNR method is problematic at night as its nighttime detected 

BLH is even larger than its daytime values.  However, it should be kept in mind that this 

comparison is not accurate, as the measurements were not necessarily made at the same 

time. Further comparisons will be made in tables and figures shown later when the zi 

pairs from the same time are compared.  The amount of data available for the SNR and 
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gradient detection method are the same, however, the gradient method shows more 

detected BLH than the SNR method, suggesting that the gradient method did not reject as 

many measurements as the SNR method. Hence, the total number of BLH detections 

from the gradient method is not limited by the limited number of height levels in the 

return signal of RASS at this site.  This may change if the boundary layer is deeper at a 

different site.      

When compared with rawinsonde, BLH from the SNR method is more variable.  

The gradient method, on the other hand, is less variable as seen from the standard 

variation of the detected BLH.     

 

Table 2.   Comparison of BLH derived from rawinsonde, SNR method, and gradient method 
at the MMR site during summer months of 2006 and 2007. 

 

    Rawinsonde SNR Gradient 
Number of data Day 152 746 811 

  Night 154 1699 1993 
  total 306 2445 2804 

Mean Zi height Day 569 639 533 
(all data) Night 518 651 464 

  Total 543 647 484 
Zi standard 
deviation Day 147 264 103 

  Night 232 297 149 
  total 196 288 141 
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Figure 19.   Comparisons between the SNR and gradient methods of BLH detection.  Data 
is taken from the MMR profiler site during the summer months of 2006 and 2007.    

 

Figure 19 shows a direct comparison of the zi from the SNR method and the 

gradient method. The diagonal red line represents perfect correlation.  The data used is 

the same as those in Table 2, except that only zi obtained from the two methods are 

within 10 minutes of time difference are used for fair comparison.  The total amount of 

data points is thus less in Figure 19 compared to those shown in Table 2.  A summary of 

the comparison of the same data points is given in Table 3 along with the comparison 

with zi from the rawinsonde data.  From Figure 19, the tendency of the SNR method to 

detect higher zi than the gradient method is clearly seen for all data as well as for the 

daytime BLH.  However, the difference for the daytime zi is 64 m (Table 3), which is 

very close to the vertical resolution of the profiler and RASS.    The mean correlation of 

the zi from the two methods is close to 70%. Also, the problem of the gradient method in 

false detection of low zi at around 200 and 300 m is also clearly seen in Figure 19.  
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Validations of the zi from the two methods are made through a thorough 

comparison with the rawinsonde zi made within 10 minute of each other shown in 

Figures 20 and 21. Since the rawinsonde measurements were made only twice daily, the 

data points for this comparison is limited, but is large enough to indicate the validity of 

out detection methods. The SNR method gives very good mean BLH during the daytime 

with a difference of less than 5 m (Table 3 and Figure 20). The nighttime mean BLH is 

overestimated by 96 m (Table 3).   Hence, our results are suitable for the daytime CBL 

and further study will need to be done on nocturnal BL to determine the most accurate 

method of detection.   

 

Figure 20.   Correlation between SNR derived BLH and rawinsonde BLH for the MMR 
site during summer months of 2006 an 2007. 

 

The gradient method give a mean underestimates of about 47 m for the daytime 

and 59 m at night.  The bias is larger compared to the SNR method, however it is still 

within the magnitude of the vertical resolution of the wind profiler.  The gradient method 
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detected BLH is, however, better correlated with the rawinsonde zi, particularly at night 

(86%). The correlation during the day is at 72%, slightly better than the SNR method.  

Thus the gradient method does a better job for the nighttime detection of the BLH with 

smaller mean discrepancy and less scatter.      

 

Figure 21.   Correlation between gradient method derived BLH and rawinsonde BLH for 
the MMR site during summer months of 2006 and 2007. 
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Table 3.   Comparison of BLH from SNR and gradient methods against rawinsonde BLH at 
the same time.  All data are from the MMR site during summer months of 2006 

and 2007.   

 

    RawinsondeSNRDiff (Raw-SNR)RawinsondeGradientDiff(Raw-GRD)
Number of data Day 85 85   115 115   

  Night 85 85   115 115   
  Total 170 170  230 230   

Mean Zi height Day 585 590 -5 559 511 47 
  Night 521 617 -96 518 459 59 
  Total 553 603 -50 542 491 52 

Zi standard deviation Day 164 199 143 118 95 82 
  Night 227 239 186 153 162 83 
  Total 200 220 172 134 128 82 

Corrcoef Day     0.6723     0.7202 
  Night     0.6683     0.8634 
  Total     0.6692     0.8037 

 

 

The box-and-whisker plot below (Figure 22) shows the major characteristics of 

the distribution of the deviations of the SNR zi and gradient zi from rawinsonde zi.  The 

left set of box plots shows larger spread of the results for both day and night than the 

plots on the right with more outliers.  The nighttime boxplots also reveals the significant 

skewness toward larger detected zi from the SNR method and the apparent negative 

skewness towards smaller zi from the gradient method.  The variation for the daytime is 

much smaller and not obviously skewed.   These same features are clearly seen in the 

histograms shown in Figure 23.   
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Figure 22.   Box and whisker plots comparing the major statistical characteristics of a) the 
deviation of SNR detected zi from those from  rawinsonde and b) the deviation of 

the gradient method detected zi from those from  rawinsonde at the MMR site 
during the summer months of 2006 and 2007. The red lines denote the median.  
The boundaries of the box denote the upper and lower quartile.  The whisker 

length is 1.5×IQR.   

 

a)          b) 
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Figure 23.   Histograms comparing statistics of a) difference between the zi from the SNR 
method and those from rawinsonde and b) difference between the zi from the 

gradient method and those from rawinsonde at the MMR site during the summer 
months of 2006 and 2007. 

a)                b) 
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V. WRF MODEL SIMULATIONS AND RESULTS 

A. WRF-ARW (ADVANCED RESEARCH WRF) MODEL SIMULATIONS 

The WRF simulations were made by The Aerospace Corporation. WRF-ARW 

(Advanced Research WRF) model version 2.2 is used in this study.   It is configured to 

use the ETA-TKE follow on PBL scheme, and the NOAH Land Surface Model (LSM), 

which has four soil layers. The 15 km outer domain and 5 km inner domain were 

initialized using the 30-second (0.9 kilometer) terrain data. The outer and inner domains 

interact. The model atmosphere uses 37 vertical levels with the top pressure of 100 hPa. 

The Rapid Radiative Transfer Model (RRTM) radiative transfer scheme within the model 

is used with a 30-minute radiance time step (Mlawer et al., 1997), along with the cumulus 

parameterization of Grell (Grell et al., 1994).  Initial and lateral boundary conditions are 

provided by the NCEP North American Model (NAM) at 40 km grid spacing.  Figure 24 

below shows the model inner domain and the corresponding terrain height for this study.  

The domain covers a portion of southern California which includes the MMR site.  In 

addition to the MMR site, locations of four other profiler sites are also shown on this 

figure.  Results from these sites will be studied in future efforts. 

 

Figure 24.   WRF-ARW inner domain terrain heights (m).  It covers southern California 
and includes the MMR site as well as four other sites. 
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The Aerospace Corporation WRF simulations were made continuously for the 

period of July, August, and September of 2007.   The daily WRF simulations over 

southern California produces hourly forecasts out to 72 hours.  For our study, we used the 

13-36 hr forecast from each daily run to form a time series of the entire three month 

except for a few days when forecasts were not available.  The original WRF outputs are 

in NETCDF data format.  A MATLAB code was created to read the NETCDF data file 

for specific variables and time periods needed for this research.  The resultant WRF data 

were then stored in MATLAB format.   

B. WRF GENERAL RESULTS 

Figure 25 shows the time series of several basic thermodynamic and surface 

variables from 10 days of WRF simulation.  The diurnal variation is seen distinctly in the 

surface and air temperature, as well as in U component of the mean wind.  The Aerospace 

WRF simulations appear to depict the sea breeze circulation and diurnal cycle rather well.  

The comparison of the surface and air temperature (Figure 25b) also shows the 

occurrence of daytime surface driven convective boundary layer and nocturnal stable 

boundary layer.   
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Figure 25.   Results from WRF simulations; a) pressure, b) surface temperature and 
potential temperature, c) u component of the mean wind, d) v component of the 
mean wind.  Data is taken from a 10-day period in July 2007 at the MMR site. 

 

Figure 26 below shows the WRF predicted virtual potential temperature profiles 

in comparison with RASS observations.  The two panels in Figure 26 are very similar, 

suggesting that the WRF simulated temperature field can represent the gradual increase 

of the boundary layer well.  Figure 26 also depicts well the diurnal variation of the 

boundary layer with the expected daytime warming and nighttime cooling. However, the 

nighttime temperature appears to be lower than that measured by RASS.  From the 

potential temperature profiles, one can see that the WRF predicted boundary layer, 

subjectively identified from the θv profile, is lower than what the RASS measurements 

show.  

a) 
 
 
 
 
 
b) 
 
 
 
 
c) 
 
 
 
 
 
d) 
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Figure 26.   Time-height cross-section of potential temperature from (a) WRF forecast and 
(b) RASS measurements at MMR site.  The pink circles on (a) denote the WRF 
diagnosed BLH.  The pink square on (b) is the BLH detected from the profiler 

SNR profiles.    

 

The WRF diagnosed BLH on Figure 26a show slight trend of growth as the BLH 

grow deeper from day 188 to day 192.  However, the diagnosed BLH are mostly within 

the model forecast inversion layer.  This is different from the SNR detected BLH (Figure 

26b), which follows the development of the BLH rather closely, although these BLH are 
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also within the RASS measured inversion.  The water vapor specific humidity (Figure 27) 

shows the forecast boundary layer more clearly due to the presence on a sharp qv gradient 

at the top of the boundary layer.  From Figure 27, one can identify two groups of the 

diagnosed boundary layer height: the daytime BLH that are above the forecast boundary 

layers and the night BLH that are at a constant level (77 m).  The latter is not seen in 

Figure 26 because of the lower limit of the vertical axis is set at 100 m for easy 

comparison with the RASS observations.  From Figures 26 and 27, we can conclude that 

the bulk Richardson number based diagnoses of BLH is not consistent with the forecast 

boundary layer thermodynamics.    

 

 

Figure 27.   Same as in Figure 26a, except for specific humidity. 

 

Figure 28 shows an overall comparison of WRF derived BLH compared to the 

SNR method, the gradient method, and rawinsonde for the MMR site during the entire 

summer of 2007.  Upon initial inspection of the figure, we can see that the WRF BLH is 
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limited by the model vertical resolution within the boundary layer.  And the WRF BLH 

does not seem to be consistent with any observed BLHs.  A zoomed-in look at a 10-day 

period (Figure 29) during this same timeframe shows that WRF seems to follow the 

general pattern of boundary layer growth. but again it is overestimated on some days and 

underestimated on others.  The very low BLH detected at the bottom of the image are 

mainly from the nighttime. 

 

 

 

Figure 28.   Boundary layer height from the WRF model, SNR method, gradient method, 
and rawinsonde for the entire summer of 2007 at the MMR site. 
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Figure 29.   Same as Figure 28, except for a 10-day period in July only.   

 

Figures 30 and 31 shows the comparison between the WRF derived BLH and 

BLH from the SNR method and with the BLH from the gradient method for the entire 

summer in scatter plots.  WRF tends to underestimate the BLH as seen in both figures.  In 

the daytime convective boundary layer case, the mean WRF BLH is about 151 m lower 

than the SNR detected BLH and 95 m lower than the gradient detected BLH.  In chapter 

IV, we identified that the true BLH is in between the SNR and gradient detected BLHs.  

Thus, the current BLH from WRF is between 95 and 151 m lower than the actual BLH.  

It is alarming that the overall correlation between the WRF BLH with the observed BLH 

(SNR or GRD) is small at about 50%.  In fact, the Richardson number based BLH is not 

correlated with the WRF predicted thermodynamic fields, as discussed in Figures 26 and 

27.  Table 4 summarizes all the relevant statistics related to the inter-comparison. 
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Figure 30.   Comparison between WRF derived BLH and SNR method BLH for the MMR 
site during summer 2007. 
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Figure 31.   Comparison between WRF derived BLH and gradient method BLH for the 
MMR site during summer 2007. 

 

Table 4.   Summary of the relevant statistics from the comparison between the WRF model 
output of BLH using the Richardson number method and the SNR and gradient 

methods of BLH detection from profiler/RASS for the MMR site during summer 
of 2007. 

 
Zi from WRF are obtained from the WRF model output based on bulk Richardson 

number 
    WRF SNR WRF-SNR WRF GRD WRF-GRD 

N All 1054 1054   770 770   
  Day 333 333   231 231   
Mean All 302 647 -345 287 518 -231 
  Day 498 649 -151 465 560 -95 
Std All 219 208 251 199 152 196 
  Day 159 195 171 121 113 115 
Corrcoef All     0.3059     0.396 
  Day     0.5509     0.514 
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C. TESTING OF AN ALTERNATIVE METHOD OF BLH DETECTION 
FROM WRF OUTPUT 

Accurate boundary layer height from the mesoscale model is dependent on two 

equally important factors.  First, the model should be able to forecast the boundary layer 

vertical structure well; and second, the diagnostic boundary layer height detection scheme 

should identify the BLH that is consistent with the model forecast boundary layer 

properties.  As we have seen from the previous discussions, for the daytime boundary 

layers, the forecast boundary layer temperature is similar to those observed by RASS 

with similar time evolution, but the vertical structure is somewhat different with the WRF 

temperature field showing a lower boundary layer height and lower nighttime 

temperature.  Improvements of the forecast of boundary layer structure relies on many 

components of the mesoscale model, including its surface flux parameterization and 

turbulence parameterization and is beyond the scope of the current thesis.   Here, we 

attempt to explore a new BLH detection scheme to replace the Richardson number based 

scheme.  The objective is to obtain BLH that is consistent with the forecast boundary 

layer structure.   

It was seen in Chapter IV that the gradient method results in better correlation 

with the rawinsonde boundary layer height even though the mean BLH is slightly 

underestimated.  The same gradient method is applied to the WRF forecast potential 

temperature field using the same gradient threshold of 2 oC/100m.  An example of the 

result is shown in Figure 32 below, where the pink circles are the Ri number BLH and the 

yellow dots are the gradient derived BLH.  This method produced even lower boundary 

layer height, but the results are consistent with the modeled boundary layer.  This method 

also appears to improve some underestimates of the nighttime BLH when the actual WRF 

boundary layer top is at levels much higher than a constant  77 m from the bulk 

Richardson method (DOY 190-193) .  It is seen in Figure 33 that the gradient detected 

BLH is also consistent with the base of sharp specific humidity gradient.    
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Figure 32.   Comparison of the WRF boundary layer height from the Richardson number 
method (pink circle)and the boundary layer height diagnosed from the WRF 

potential temperature field using a gradient method (yellow dots) at the MMR site 
during July 2007.  Data points are overlaid on contours of virtual potential 

temperature.   
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Figure 33.   Same as in Figure 32 except for specific humidity and the gradient detected 
WRF BLH is shown as blue *.     

 
 
 

Figure 34 shows a comparison between the SNR method, the gradient method, 

rawinsonde, WRF Richardson number derived, and WRF gradient method derived 

BLH’s.  The gradient method detected WRF BLH is apparently much lower than the 

observations.  However, it better depicts the boundary layer height variations that show 

consistency with the observed BLH’s.     



 61

 

Figure 34.   Comparison of BLH detection from rawinsonde, SNR method, gradient 
method, WRF Richardson number, and WRF gradient method.  Data is taken 

from the MMR site during July 2007. 

 

The better correlation between the gradient detected WRF BLH and the 

observations are best seen in the scatter plots of Figures 35 and 36.  Although with the 

much lower BLH, Figures 35 and 36 show improved correlation between the WRF 

gradient method BLH and RASS (0.70) and the SNR method (0.58).  A summary of the 

comparison can be seen in Table 5.  Compared to results in Table 4, Table 5 shows that 

the gradient method significantly improved the BLH detection at nighttime although 

comparison with the gradient method BLH from the RASS measurements for the daytime 

cases also improved slightly.   
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Figure 35.   Correlation between WRF gradient method of BLH detection and gradient 
method from profiler/RASS for the MMR site during summer 2007. 
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Figure 36.   Correlation between WRF gradient method of BLH detection and SNR 
method from profiler/RASS for the MMR site during summer 2007. 

 

Table 5.   Summary of the comparison between the WRF model output of BLH using the 
gradient method and the SNR and gradient methods of BLH detection from 

profiler/RASS for the MMR site during summer of 2007. 

 
Zi from WRF are obtained from the WRF model output using gradient method 

    WRF SNR WRF-SNR WRF GRD WRF-GRD 
N All 796 796   601 601   
  Day 243 243   183 183   
Mean All 173 629 -455 168 506 -339 
  Day 220 626 -406 203 558 -355 
Std All 164 202 171 137 144 108 
  Day 153 166 162 113 104 92 
Corrcoef All     0.5811     0.7014 
  Day     0.4849     0.6446 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

A. SUMMARY AND CONCLUSIONS 

This thesis study focuses on the evaluation of the boundary layer height (BLH) 

diagnosed from a mesoscale model in comparison to wind profiler/Radio Acoustic 

Sounding System (RASS) measurements from the wind profiler site at Miramar Marine 

Corps Station (MMR).  This objective is met through validation of the observed BLH and 

evaluations of the model BLH using the observed BLHs.   

The data used for this research was mainly collected at the Miramar-San Diego 

profiler site where measurements of a 915 MHz wind profiler with RASS system are 

available hourly.  Twice daily routine rawinsonde measurements are also available.  In 

addition, the site is within the WRF model inner domain so that we can use the 

measurements to evaluate WRF diagnosed boundary layer height.  For validation of our 

boundary layer height detection scheme, we used data from July, August, and September 

in 2006 and 2007.  For model evaluation, data from summer of 2007 were used.   

We have developed two methods to detect boundary layer height from the 

profiler/RASS measurements, one uses Signal-to-Noise-Ratio (SNR) from the profiler, 

and the other uses the vertical gradient of virtual potential temperature from RASS.    The 

detected BLH was validated against BLH from rawinsonde measurements. The SNR 

method gives a better mean BLH in the daytime convective unstable boundary layers 

while the gradient method shows better correlation with the rawinsonde BLH.  The 

gradient method appears to give better results for the nighttime boundary layers.   

The Weather Research and Forecasting (WRF) model simulations were made by 

the Aerospace Corporation for July, August, and September of 2007 and the output were 

kindly made available for this thesis study.  The model evaluation was made at one point 

only: the inland location at Miramar (MMR) near San Diego.  The model boundary layer 

height was compared to those from profiler/RASS.  Although WRF reasonably predicts 

the general boundary layer behavior, the WRF forecast thermodynamic field indicates 

that the boundary layer height in WRF should be lower than the observed BLH by several 
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hundred meters.  However, the BLH output from WRF, diagnosed from the bulk 

Richardson, is not consistent with the forecast thermodynamic field.  Instead of at the 

forecast inversion base, the diagnosed BLH from WRF is well above the WRF forecast 

boundary layer.  Consequently, although the mean output BLH from WRF only appears 

to be about 95 to 150 m lower compared to the observed BLH, the actual forecast 

boundary layer is much lower if the BLH can diagnosed from the model field more 

accurately.   

An alternative BLH detection scheme is proposed and tested for WRF.  This is a 

simple scheme that involves only the potential temperature gradient.  This scheme shows 

significant improvement of the nighttime BLH detection and the scheme improved 

slightly on the correlation with the BLH detected from the gradient method.  The scheme 

does not give ‘better’ BLH from WRF in comparison with observation, because it does 

not change the WRF physical parameterizations for a better forecasted boundary layer, 

which is not the focus of this study.   

B. RECOMMENDATIONS 
An alternative boundary layer height diagnostic scheme should be investigated for 

both the daytime and nighttime boundary layers since the bulk Richardson number based 

diagnostic tool does not appear to be effective.  More thorough evaluations of the WRF 

performance in general should be made at different locations within the model domain, 

such as LAX, MOV, ONT, or SIM (on Figure 24), to give more comparison of the WRF 

detected BLH at those locations.  Along with the data from MMR, all sites combined 

would give a more thorough investigation into the accuracy of the WRF model derived 

BLH.  Further investigation into the model dynamics and physics should be done in order 

to improve the forecast of boundary layer thermodynamic properties.     
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